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• Topic models
– PLSA
– LDA
– …

• Neural models
– Word2vec
– Paragraph vector

model
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Motivation

• Most tasks in IR benefit from representations that reflect the semantic
relationships between words and documents.

• Word-document matching is essential for language modeling approaches.

• No	priori	topic	number
• Highly	efficient	in	training
• Automatically	learn	document	representations
• Language	model
• Optimize	a	weighting	scheme	widely	used	in	IR



Outline

• Paragraph Vector Based Retrieval Model
– What is paragraph vector model
– How to use it for retrieval

• Issues of Paragraph Vector Model in Retrieval Scenario
– Over-fitting on short documents
– Improper noise distribution
– Insufficient modeling for word substitution

• Experiments
– Experiment setup
– Results
– Parameter sensitivity



Paragraph Vector Model

drugresearchfood vaccine

…

dDocument

Semantic Space

• Paragraph vector model [13] jointly learns embedding for words and
documents through optimizing the probabilities of observed word-document
pairs defined as:

P (w|d) = exp(~w · ~d)
P

w02Vw
exp( ~w0 · ~d)

• The following figure describes the structure of Paragraph vector model with
distributed bag-of-words assumption (PV-DBOW).

(1)



Language Estimation with Paragraph Vector Model

• Inspired by LDA-based retrieval model [24], we apply paragraph vector model by
smoothing the probability estimation in language modeling approaches with PV-
DBOW and propose a paragraph vector based retrieval model (PV-LM).

drug

law

Query: food drug law

q1

q2

q3

drugresearchfood

P (q1|d) = �PPV (q1|d) + (1� �)PLM (q1|d)

vaccine …

dDocument

Semantic Space

(2)



Language Estimation with Paragraph Vector Model

• However, PV-LM did not
produce promising results:
– The performance of	PV-LM is

highly sensitive to the training
iteration of PV-DBOW.

– The mean average precision (MAP)
of PV-LM does not outperform
LDA-LM [24] on Robust04 (0.259).
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Figure 1: The MAP of QL and the PV-based retrieval model 
with the original PV-DBOW on Robust04 with title queries in 
respect of different training iteration.
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Overfitting on Short Documents

• The	PV-based	retrieval	model	tends	to	retrieve	more	short	documents	as	
training	iteration	increases.

• In a subset of 10,000 random sampled documents, we observed significant
norm increase for short documents’ vectors.
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Figure 2: The distribution of documents in respect of 
document length for top 50 documents retrieved by PV-
based retrieval model on Robust04 (title queries). 

Figure 3: The distribution of vector norms in respect of 
document length for 10,000 documents randomly 
sampled from Robust04. 



Overfitting on Short Documents

• Long	document	vector	norms	change	the	probability	distribution	of	
document	language	models	and	makes	them	focus	on	observed	words.

• One	direct	solution	to	this	problem	is	L2	regularization:
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Figure 2: The distribution of documents in respect of 
document length for top 50 documents retrieved by PV-
based retrieval model on Robust04 (title queries). 

Figure 3: The distribution of vector norms in respect of 
document length for 10,000 documents randomly 
sampled from Robust04. 
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Negative Sampling

• Proposed by Mikolov et al. [17], negative
sampling is a technique that approximates the
global objective of PV-DBOW by sampling
“negative” terms from corpus:

` =
X

w2Vw

X

d2Vd

#(w, d) log(�(~w · ~d))

+

X

w2Vw

X

d2Vd

#(w, d)(k · EwN⇠PV [log �(� ~wN · ~d)])

• If we derived the local objective of a specific
word-doc pair and let its partial derivative equal
to zero. Then we have:

~w · ~d = log(

#(w, d)

#(d)
· 1

PV (w)
)� log k
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Improper Noise Distribution
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• The original negative sampling technique

adopts a empirical word distribution as：

which makes the original PV-DBOW
optimizing a variation of TF-ICF weighting
scheme.

PV (wN ) =
#wN

|C|

which makes the PV-DBOW optimizing a
variation of TF-IDF weighting scheme.

PD(wN ) =
#D(wN )P

w02Vw
#D(w0)

• Empirically:
- CF-based negative sampling suppresses

frequent words too much.
- TF-ICF weighting loses	the	document structure

information

• We	proposed	a document-frequency based
noise distribution:

Figure 4: The distribution of the original negative 
sampling (PV ) and the document-frequency based 
negative sampling (PD). The horizontal axis represents 
log value of word frequency (base 10). 

~w · ~d = log(

#(w, d)

#(d)
· 1

PV (w)
)� log k (5)
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Insufficient	Modeling	for	Word	Substitution	

• Existing topic models and embedding models mainly focus	on two types of
word	relations: co-occurrence (e.g. topic related words) and substitution
(e.g. synonyms)

• PV-DBOW focuses on capturing word co-occurrence but ignores word-
context information, which makes it difficult to understand word
substitution relation (e.g. “clothing” and “garment”).

PV-DBOW
clothing garment

clothing 1.000 0.632

LA112689-0194 (TF
clothing

= 2, TF
garment

= 26) 0.044 0.134
LA112889-0108 (TF

clothing

= 0, TF
garment

= 10) -0.003 0.100
LA021090-0137 (TF

clothing

= 7, TF
garment

= 9) 0.052 0.092
LA022890-0105 (TF

clothing

= 6, TF
garment

= 6) 0.066 0.079

Table 1: The cosine similarities between “clothing”, “garment” and four relevant documents in 
Robust04 query 361 (“clothing sweatshops”). 



Insufficient	Modeling	for	Word	Substitution	

• As suggested by Dai et al. [5] and Sun et al. [22], one approach to
alleviate the problem is regularizing PV-DBOW by requiring word
vectors to predict their context. Specifically, we apply a joint
objective as:

` = log(�( ~wi · ~d)) + k · EwN⇠PV [log �(� ~wN · ~d)]

+

i+LX

j=i�L
j 6=i

log(�( ~wi · ~cj)) + k · EcN⇠PV [log �(� ~wi · ~cN )]

PV-DBOW PV joint objective
clothing garment clothing garment

clothing 1.000 0.632 1.000 0.638

LA112689-0194 (TF
clothing

= 2, TF
garment

= 26) 0.044 0.134 0.107 0.169
LA112889-0108 (TF

clothing

= 0, TF
garment

= 10) -0.003 0.100 0.126 0.155
LA021090-0137 (TF

clothing

= 7, TF
garment

= 9) 0.052 0.092 0.147 0.119
LA022890-0105 (TF

clothing

= 6, TF
garment

= 6) 0.066 0.079 0.107 0.107

Table 1: The cosine similarities between “clothing”, “garment” and four relevant documents in 
Robust04 query 361 (“clothing sweatshops”). 

(8)
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• Datasets:
– TREC collections: Robust04, GOV2*	with title and description queries
– Five-fold cross validation
– Evaluation: mean average precision (MAP), normalized discounted

cumulative gain (NDCG@20) and precision (P@20)

Experiment Setup

*	Due to the efficiency issues, we used a random subset with 500k documents to train LDA and PV on GOV2

• Reported Models:
– QL:	Query	likelihood	model	[19]	with	Dirichlet smoothing.
– LDA-LM:	LDA-based	retrieval	model	proposed	by	Wei	and	Croft	[15].
– PV-LM:	the	PV-based	retrieval	model	with	the	PV-DBOW	proposed	by	Le	et	al.	

[13]
– EPV-R-LM:	the	PV-LM	model	with	L2	regularization.
– EPV-DR-LM:	the	EPV-R-LM	model	with	document	frequency	based	negative	

sampling.
– EPV-DRJ-LM:	the	EPV-DR-LM	model	with	joint	objective.



Robust04 collection
Topic titles Topic descriptions

Method MAP nDCG@20 P@20 MAP nDCG@20 P@20

QL 0.253 0.415 0.369 0.246 0.391 0.334
LDA-LM 0.258⇤ 0.421 0.374⇤ 0.247 0.392 0.336
PV-LM 0.259⇤ 0.418 0.371 0.247 0.392 0.335
EPV-R-LM 0.259⇤ 0.418 0.370 0.247 0.393 0.336
EPV-DR-LM 0.262⇤ 0.418 0.368 0.252⇤+ 0.397⇤ 0.338⇤

EPV-DRJ-LM 0.267⇤+ 0.425⇤ 0.376⇤ 0.253⇤+ 0.404⇤+ 0.347⇤+

GOV2 collection
Topic titles Topic descriptions

Method MAP nDCG@20 P@20 MAP nDCG@20 P@20

QL 0.295+ 0.409 0.510+ 0.249+ 0.371 0.470
LDA-LM 0.290 0.406 0.505 0.245 0.376 0.468
PV-LM 0.294 0.409 0.510+ 0.246 0.364 0.463
EPV-R-LM 0.295+ 0.410 0.511+ 0.250+ 0.368 0.467
EPV-DR-LM 0.296+ 0.412 0.512 0.250+ 0.371 0.470
EPV-DRJ-LM 0.297+ 0.415⇤+ 0.519⇤+ 0.252⇤+ 0.371 0.472

Table 2: Comparison of different models over Robust04 and GOV2 collection. ∗, + means significant difference over 
QL, LDA-LM respectively at 0.05 significance level measured by Fisher randomization test. The best performance is 
highlighted in boldface. 

Experiment Results



• With L2 regularization, EPV	models	showed	better	stability	in	long	term	
training.

• Increasing vector dimension does not consistently improve the performance of
PV-LM,	but	it	seems	beneficial	for	EPV-DRJ-LM.	

Parameter Sensitivity

0.252
0.253
0.254
0.255
0.256
0.257
0.258
0.259
0.260
0.261
0.262
0.263
0.264
0.265
0.266
0.267
0.268

10 20 30 40 50 60 70 80 90

M
AP

Iteration number

PV-LM EPV-R-LM EPV-DR-LM EPV-DRJ-LM

0.252
0.253
0.254
0.255
0.256
0.257
0.258
0.259
0.260
0.261
0.262
0.263
0.264
0.265
0.266
0.267
0.268
0.269

50 100 150 200 250 300 350 400 450 500

M
AP

Vector Dimension

PV-LM EPV-DRJ-LM

Figure 5: MAP variation of PV-based retrieval models with 
respect to iteration number on Robust04 title queries. 

Figure 6: MAP variation of PV-based retrieval models with 
respect to vector dimensions on Robust04 title queries.



Conclusion

• In	this	work,	we	focus	on	the	theoretic	and	empirical	analysis	
of	the	paragraph	vector	model	for	language	estimation	in	IR.

• We	identify	three	issues	of	PV-DBOW:
– It	is	vulnerable	to	over-fitting	short	documents.
– Its	original	negative	sampling	strategy	suppresses	frequent	words	too	

much.
– It	lacks	sufficient	modeling	for	word	substitution	relations.		

• Things	to	note:
– Vector norms	affect	the	language	estimation	of	paragraph	vector	

models.
– The	noise	distribution	of	negative	sampling	determines	the	

optimization	objective	of	paragraph	vector	models



Thanks	for	listening!
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