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Motivation

• Question answering plays a central role in many popular 
mobile search systems and intelligent assistant systems
– Google Assistant, Microsoft Cortana, Microsoft Xiaoice, IBM Watson, etc.

• Users are more likely to expect direct answers instead of a 
rank list of documents from search results
– Retrieve finer grained text units such as passages or sentences as answers for 

Web queries or questions



Learning to Rank for QA

• Many previous QA systems used a learning to rank approach
– Encode question/answers with complex linguistic features including 

lexical, syntactic and semantic features

– E.g. Surdeanu et al. [1,2] investigated a wide range of feature types 
for learning to rank answers

• Problems with learning to rank approaches
– Reply on feature engineering, which is time consuming and requires 

domain dependent expertise

– Need additional NLP parsers or external knowledge sources

• may not be available for some languages

[1] M. Surdeanu, M. Ciaramita, and H. Zaragoza. Learning to rank answers on large online QA collections. In ACL 2008.
[2] M. Surdeanu, M. Ciaramita, and H. Zaragoza. Learning to rank answers to non-factoid questions from web collections. Comput. Linguist.,  2011.



Deep Learning for QA

• Recently  researchers have been studying deep learning 
approaches to learn semantic match between questions and 
answers
– Convolutional Neural Networks (CNN) [3, 4, 5]

– Long Short-Term Memory (LSTM) networks [6]

– Benefit of not requiring hand-crafted linguistic features and external 
resources except pre-trained word embedding

– Some of them [5] achieve state-of-the-art performance for answer 
sentence selection task benchmarked by the TREC QA Data

[3] L. Yu, K. M. Hermann, P. Blunsom, and S. Pulman. Deep Learning for Answer Sentence Selection. In NIPS Deep Learning Workshop, 2014.
[4] X. Qiu and X. Huang. Convolutional neural tensor network architecture for community-based question answering.In IJCAI 2015.
[5] A. Severyn and A. Moschitti. Learning to rank short text pairs with convolutional deep neural networks. In SIGIR 2015.
[6] D. Wang and E. Nyberg. A long short-term memory model for answer sentence selection in question answering. In ACL 2015.



Deep Learning for QA

• Problems with current deep learning architectures for answer 
sentence selection
– The proposed models, either based on CNN or LSTM, need to be 

combined with additional features such as word overlap features [3,5] 
and BM25 [6] to perform well

– Without combining additional features, the performance of their model is 
significantly worse
• Comparing with the results from the state-of-the-art methods using linguistic 

feature engineering [7]

• Research question:
– Could we build deep learning models that can achieve comparable or 

even better performance without combining additional features than 
methods using feature engineering ?

[7] W.-t. Yih, M.-W. Chang, C. Meek, and A. Pastusiak. Question answering using enhanced lexical semantic models. In ACL 2013.



Observations From the Current Deep Learning 
Architectures for Ranking Answers

• Architectures not specifically designed for question/answer matching

– CNN

• Uses position-shared weights with local perceptive filters to learn spatial 
regularities as in many CV tasks

• Such spatial regularities may not exist in the semantic matching between 
questions and answers

• Complex linguistic property of natural languages

– LSTM

• View the question/answer matching problem in a sequential way

• No direct interactions between question and answer terms

• Can not capture sufficiently detailed matching signals

• Our solution

– Introduce a novel value-shared weighting scheme in deep neural networks

– Learn value regularities rather than spatial regularities



• Lack of modeling question focus
– Understanding the focus of questions which are important terms is 

helpful for ranking answers correctly

• E.g. Where was the first burger king restaurant opened ?

– Most existing text matching deep learning models do not explicitly 
model question focus

• Our solution
– Incorporate attention scheme over question terms

• Introduce attention mechanisms with a gating function

• Explicitly discriminate the question term importance

Observations From the Current Deep Learning 
Architectures for Ranking Answers
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QA Matching Matrix

• QA Matching Matrix
– A matrix represents the semantic matching information of term pairs 

from a question and answer pair

– Given a question 𝐪 with length 𝑀 and an answer 𝐚 with length 𝑁

• An 𝑀 by 𝑁 matrix 𝐏

• 𝐏j,i is the sematic similarity between 𝐪𝑗 and 𝐚𝑖 using word embedding

• Assign value 1 if 𝐪𝑗 and 𝐚𝑖 are the same term

• Inspired by the ARC-II model proposed by Hu et al. [8]
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[8] B. Hu, Z. Lu, H. Li, and Q. Chen. Convolutional neural network architectures for matching natural language sentences. In NIPS 2014.



Attention-based Neural Matching Model

• Neural network architecture 
with value-shared weights
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Value-shared Weighting

• In CNN, the weight associated with a node only depends on its position as specified by the filters
• In aNMM, the weight associated with a node depends on its value
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• Neural network architecture 
with value-shared weights



Question Attention Network

• Neural network architecture 
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Two Variations: aNMM-1 and aNMM-2

• Two variations
• aNMM-1: basic architecture
• aNMM-2: Extension with multiple 

sets of value-share weights
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Back Propagation for Model Training

– Backward propagation with stochastic gradient descent

– Pairwise Learning

– Given a triple (𝐪, 𝐚+, 𝐚−) where 

• 𝐪 question sentence

• 𝐚+ correct answer sentence 

• 𝐚− wrong answer sentence

• Hinge Loss function  𝑒(𝐪, 𝐚+, 𝐚−; 𝐰, 𝐫, 𝐯) = max(0, 1 − S 𝐪, 𝐚+ + S(𝐪, 𝐚−))

• Compute Δ𝑆 = 1 − S 𝐪, 𝐚+ + S(𝐪, 𝐚−)

• If Δ𝑆 ≤ 0 Skip this triple

– If Δ𝑆 > 0 Compute the gradients w.r.t 𝐯, 𝐫,𝐰

– Update the model parameters to minimize the loss function with BP algorithm
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Experimental Data and Settings

• TREC QA data set from TREC QA track 8-13
• One of the most widely used benchmarks for answer sentence 

selection/ranking

• Contains a set of factoid questions with candidate answers which are 
limited to a single sentence

• Judgements in TRAIN and TRAIN-ALL

• Word embedding: pre-trained with English Wikipedia dump with the 
Word2Vec tool by Mikolov et. al [9, 10]

• Statistics of the TREC QA data set

[9] https://code.google.com/archive/p/word2vec/
[10] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Distributed Representations of Words and Phrases and their 
Compositionality. In NIPS 2013.

https://code.google.com/archive/p/word2vec/


Model Learning Results

• Visualization of learned question term importance



Experimental Results

• Learning without combining additional features

Compare with methods using feature 
engineering (on TRAIN-ALL)

Compare with deep learning methods

• Achieve better performance comparing with other methods using feature engineering
• Show significant improvements comparing with previous deep learning methods
• Results of aNMM-1 and aNMM-2 are very close
• aNMM-1 could be trained with higher efficiency



Experimental Results

• Learning with combining additional features

Compare with deep learning methods
Severyn et al. (SIGIR 2015) is the state-of-the-art result

Overview of previously published results on TREC QA data
(the best setting of each model trained on TRAIN-ALL)

• Combine the score of aNMM-1/aNMM-2 with QL score
• With the combined feature, both aNMM-1 and aNMM-2 have better performances
• aNMM-1 also outperforms CDNN by Severyn et al. ([5] in SIGIR 2015) which is the current state-

of-the-art method
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Conclusions and Future Work

• Propose an attention based neural matching model for 
ranking short answer text
– Adopt value-shared weighting scheme instead of position-shared 

weighting scheme for combining matching signals

– Incorporate question term importance learning using a question 
attention network

• Perform a thorough experimental study with TREC QA data 
and show promising results
– Without combining additional features

• Outperform previous deep learning methods and feature engineering 
methods with large gains

– With one simple additional feature

• Outperform the state-of-the-art method



Conclusions and Future Work

• Additional results on Microsoft Research WikiQA data [11]
– Double confirms the advantages of the attention based neural matching 

models for ranking answer sentences.

• Future work
– Extend our work to include non-factoid question answering data sets

• Yahoo CQA /Stack Overflow/ WebAP

– Interactive QA & Natural language dialogue for FAQ search

[11] Yi Yang, Wen-tau Yih and Christopher Meek. WikiQA: A Challenge Dataset for Open-Domain Question Answering, In EMNLP’15.
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