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Community Question Answering 

• Open platforms for sharing expertise 

• Large repositories of valuable knowledge 
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• Poor expertise matching 

• Low-quality answers 

• Under-utilized archived questions 

• Fundamental question: how to model topics and 
expertise in CQA sites 
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Existing CQA Mechanism Challenges 
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Motivation 

Vote 
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• A case study of Stack Overflow 

Question 

Answer 
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• Propose a principle approach to jointly model topics 
and expertise in CQA 

– No one is expert in all topical interests  

– Each new question should be routed to answerers 
interested in related topics with the right level of expertise 

• Achieve better understanding of both user topical 
interest and expertise by leveraging tagging and 
voting information 

– Tags are important user-generated category information 
of Q&A posts 

– Votes indicate a CQA community’s long term review result 
for a given user’s expertise under a specific topic 

5 

Motivation 
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Related Work 
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• Link Analysis 
– HITS (Jurczyk and Agichtein, CIKM07) 

– Expertise Rank and Z-score (Zhang et al., WWW07) 

– Find global experts without model of user interests 

• Latent Topical Analysis 
– UQA Model ( Guo et al. CIKM08) 

– Fail to capture to what extent these users’ expertise match the 
questions with similar topical interest 

• Topic Sensitive PageRank 
– TwitterRank (Weng et al. WSDM10) 

– Topic-sensitive probabilistic model for expert finding (Zhou et al. 
CIKM12) 
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• Concepts 

– Topical Interest 

– Topical Expertise 

– Q&A Graph 

 

• Our Approach 

– Topic Expertise Model 

– CQARank to combine learning results from TEM with link 
analysis of Q&A graph 
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Method Overview 
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Method Overview 
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• CQARank Recommendation Framework 
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Topic Expertise Model 

•𝑈: # of users 
•𝑁𝑢: # of posts 
•𝐿𝑢,𝑛: # of words 
•𝑃𝑢,𝑛: # of tags 
•z: topic label 
•e: expertise label 
•v: a vote 
•w: a word 
•t: a tag 
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CQARank 

• CQARank combines textual content learning result of 
TEM with link analysis to enforce user topical expertise 
learning 

• Construct Q&A Graph 𝐺 = (𝑉, 𝐸) 

– 𝑉 is a set of nodes representing users 

– 𝐸 is a set of directed edges from the asker to the answerer 

• 𝑒 = 𝑢𝑖 , 𝑢𝑗   𝑢𝑖 ∈ 𝑉, 𝑢𝑗 ∈ 𝑉 

• Weight 𝑊𝑖𝑗  is the number of all answers answered by 𝑢𝑗   

for questions of  𝑢𝑖  
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CQARank 

 For each topic 𝑧 , the transition probability from 
asker 𝑢𝑖 to answerer 𝑢𝑗  is defined as: 

o 𝑃𝑧 𝑖 → 𝑗 =
𝑊𝑖𝑗 ∙𝑠𝑖𝑚𝑧(𝑖→𝑗)

Σ𝑘=1
𝑉
𝑊𝑖𝑘∙𝑠𝑖𝑚𝑧(𝑖→𝑘)

  𝑖𝑓  𝑤𝑖,𝑚𝑚 𝑊 ≠ 0 

o  𝑃𝑧 𝑖 → 𝑗 = 0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒              

• 𝑠𝑖𝑚𝑧(𝑖 → 𝑗) is the similarity between 𝑢𝑖 and 𝑢𝑗  

under topic 𝑧, which is defined as 

o 𝑠𝑖𝑚𝑧 𝑖 → 𝑗 = 1 − 𝜃𝑖𝑧
′  − 𝜃𝑗𝑧

′  

• The row-normalized transition matrix M is defined as 

o 𝐌𝑖𝑗 = 𝑃𝑧 𝑖 → 𝑗  
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CQARank 

• Given topic 𝑧 , the CQARank saliency score of 𝑢𝑖 is 
computed based on the following formula: 

o 𝐑𝑧 𝑢𝑖 =  𝜆 𝑗:𝑢𝑗→𝑢𝑖𝐑𝑧 𝑢𝑗 ∙ 𝐌𝑖𝑗 + 1 − 𝜆 ∙ 𝜃𝑢𝑖𝑧 ∙ 𝐄(𝑧, 𝑢𝑖)   

o 𝐄(𝑧, 𝑢𝑖) is the estimated expertise score of 𝑢𝑖 under topic 𝑧, 
which is defined as the expectation of user topical expertise 
distribution learnt by TEM.         

𝐄 𝑧, 𝑢𝑖 = 𝜙𝑧,𝑢𝑖,𝑒 

𝑒

∙ 𝜇𝑒 

o 𝜆 ∈ 0,1  is a parameter to control the probability of 
teleportation operation. 
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• Stack Overflow Data Set 

– All Q&A posts in three months (May 1𝑠𝑡 to August 1𝑠𝑡, 2009) 

– Training data: 8,904 questions and 96,629 answers posted 
by 663 users.(10,689 unique tags and 135 unique votes)  

– Testing data: 1,173 questions and 9,883 answers 

• Data Preprocessing 

– Tokenize text and discard all code snippets 

– Remove stop words and HTML tags in text 

• Parameters Setting 

– 𝐾 = 15, 𝐸 = 10, 𝛼 =
50

𝐾
, 𝛽 = 0.01, 𝛾 = 0.01, 𝜂 = 0.001, 𝜆 = 0.2 

– Norma-Gamma parameters 

– 500 iterations of Gibbs Sampling 
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Experiments 
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• Topic Analysis - topic tags 

– Top tags provide phrase level features to distill richer topic 
information 
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TEM Results 
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• Topic Analysis - topic words 

– Top words have strong correlation with top tags under the 
same topic 

 

20 

TEM Results 
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• Expertise Analysis 

– TEM learns different user expertise levels by clustering 
votes using GMM component. 

– 10 Gaussian distributions with various means for the 
generation of votes in data. 

– The higher the mean is, the lower the precision is. 
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TEM Results 
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• Task 

– Given a new question 𝑞 and a set of users 𝐔, Rank users by 
their interests and expertise to answer question 𝑞. 

– Recommendation score function 
𝑆 𝑢, 𝑞 = 𝑆𝑖𝑚 𝑢, 𝑞 ∙ 𝐸𝑥𝑝𝑒𝑟𝑡 𝑢, 𝑞

= (1 − 𝐽𝑆(𝜃𝑢, 𝜃𝑞)) ∙ 𝜃𝑞,𝑧 ∙ 𝐸𝑥𝑝𝑒𝑟𝑡(𝑢, 𝑧)

𝑧

 

– 𝜃𝑞,𝑧 is the estimated posterior topic distribution of 

question 𝑞 

𝜃𝑞,𝑧 ∝ 𝑝 𝑧 𝐰𝑞 , 𝐭𝑞 , 𝑢 = 𝑝 𝑧 𝑢 𝑝 𝐰𝑞 𝑧 𝑝 𝐭𝑞 𝑧

= 𝜃𝑢,𝑧  𝜑 𝑧,𝑤  𝜓(𝑧, 𝑡)

𝑡:𝐭𝑞𝑤:𝐰𝑞
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Recommend Expert Users 
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• Our method  

– CQARank 

• Baselines 

Link analysis method 

– In Degree(ID) 

– PageRank(PR) 

Probabilistic generative model 

– TEM(Part of our method) 

– UQA( Guo et al. CIKM08) 

Combine link analysis and topic model 

– Topic Sensitive PageRank(TSPR)(Zhou et al. CIKM12) 
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Recommend Expert Users 
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• Evaluation Criteria 

– Ground truth: User rank list by average votes for 
answering 𝑞 

– Metrics: 𝑛𝐷𝐶𝐺 , Pearson/Kendall correlation coefficients 

• Results 
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Recommend Expert Users 
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• Task 

– Give a new question 𝑞 and a set of answers 𝐀, Rank all 
answers in 𝐀. 

– Recommendation score function 
𝑆 𝑎, 𝑞 = 𝑆𝑖𝑚 𝑎, 𝑞 ∙ 𝐸𝑥𝑝𝑒𝑟𝑡 𝑢, 𝑞

= (1 − 𝐽𝑆(𝜃𝑎, 𝜃𝑞)) ∙ 𝜃𝑞,𝑧 ∙ 𝐸𝑥𝑝𝑒𝑟𝑡(𝑢, 𝑧)

𝑧

 

• Baselines and evaluation criteria  are the same with 
expert recommendation task 

• We use each answer’s vote to generate ground truth 
rank list 
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Recommend Answers 
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• Result 
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Recommend Answers 
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• When a user asks a new question(referred as query 
question), the user will often get replies of links to 
other similar questions 

• Crawl 1000 questions as query question set whose 
similar questions exist in the training data set 

• For each query question with 𝑛 similar questions, we 
randomly select another 𝑚 (m = 1000) questions 
from the training data set to form candidate similar 
questions 
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Recommend Similar Questions 
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• All comparing methods rank these 𝑚 + 𝑛 candidate 
similar questions according to their  similarity with 
the query question 

• The higher the similar questions are ranked, the 
better the performance of the method is. 

• Recommendation score is computed based on JS-
divergence between topic distributions of the query 
question and candidate similar questions 
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Recommend Similar Questions 
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• Baseline 

– TSPR(LDA), UQA, SimTag 

• Evaluation Criteria 

– Precision@K, Average rank of similar questions, Mean 
reciprocal rank (MRR), Cumulative distribution of ranks 
(CDR) 
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Recommend Similar Questions 
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• Performance in expert users recommendation of 
CQARank by varying the number of expertise (𝐸) and 
topics (𝐾) 
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Parameter Sensitivity Analysis 
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• Conclusions 

– A probabilistic generative model to jointly model topics 
and expertise in CQA services 

– CQARank algorithm to combine textual content learning 
with link analysis 

– Our model is generalized and applicable for various CQA 
tasks 

• Future Work 

– Temporal analysis of topic expertise and interests in CQA 

– Social influence of experts 
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Summery 
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Thank you 

Q&A 


