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Abstract—Threaded debate forums have become one of the
major social media platforms. Usually people argue with one
another using not only claims and evidences about the topic
under discussion but also language used to organize them,
which we refer to as shell. In this paper, we study how
to separate shell from topical contents using unsupervised
methods. Along this line, we develop a latent variable model
named Shell Topic Model (STM) to jointly model both topics
and shell. Experiments on real online debate data show that
our model can find both meaningful shell and topics. The
results also show the effectiveness of our model by comparing it
with several baselines in shell phrases extraction and document
modeling.

Keywords-argumentative text; organizational phrases; topic
modeling; latent variable model

I. INTRODUCTION

Argumentative texts are a type of text that aims to

convince or persuade the audience. With the rapid growth of

social media, we see more argumentative texts in discussion

and debate forums contributed by ordinary users, where the

topics under discussion range from religion to politics. An

important aspect of mining social media content is to analyze

and understand such argumentative texts.

In argumentative texts, when people present an argument,

they often organize the evidences and claims in a certain

way to strengthen the persuasion power. The organizational

structures consist of phrases or sentence patterns that are

not directly related to the issue under discussion but serve

as connectors to link the evidences and claims. Consider

the example below, which is a post from CreatDebate1, a

popular online debate forum.

I don’t think that this is necessarily accurate;

I do tend to agree that science itself doesn’t

require absolute proof. After all, we don’t have

absolute proof of a number of theories. Rather, I
believe it has more to do with the ability to make

accurate predictions using the theory/hypothesis as

a premise; hypotheses are yet untested, theories

have passed numerous ‘tests’ and failed none that

were not themselves fundamentally flawed.

∗Corresponding author
1http://www.createdebate.com

As shown in the example, words in bold are organizational

phrases that are not directly related to the topic under

discussion but logically connects the text segments that are

directly discussing the issue. Organizational phrases can be

indicators of opinion expressions, such as I don’t think that,
or argumentative structures, such as after all. Generally,

posts in discussion forums can be viewed as consisting of

language used to express topical contents and language used

to organize them.

Separating topical contents from organizational phrases

can be beneficial for various tasks in mining argumentative

texts from social media. For example, when we want to

classify forum threads into general topics such as politics

and religion, organizational phrases would not be very

relevant and the classification presumably should be based

mostly on the topical contents of the texts. On the other

hand, identification of organizational phrases helps us un-

derstand the writer’s writing styles and sometimes also the

interactions between online users.

To the best of our knowledge, a recent study by Madnani

et al. [1] is the first and only study that formally defines

the task of identifying organizational text segments in ar-

gumentative texts. Following their terminology, we refer to

organizational phrases as shell (and the rest of the texts as

meat). In other words, shell is sequences of words used to

organize topical contents.

However, the solutions provided in [1] have some limi-

tations. One solution provided in [1] is a rule-based system

using manually crafted rules. Since these rules are derived

from a relatively small sample of texts, it is not clear how

general they are when applied to different texts. Another

solution provided in [1] is a supervised learning approach

based on conditional random fields. This approach requires

a sufficient amount of manually annotated data for training,

which is expensive to obtain. Also, the training and evalu-

ation in [1] is done on formal argumentative texts (student

essays), but argumentative texts in online forums tend to be

more informal and noisy.

In this paper, we propose a fully unsupervised model

called Shell Topic Model (STM) to separate shell phrases

from topical contents. In this model, a first-order (bigram)

language model is used to model shell while topical contents

are modeled using unigrams. In addition, we model function
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words in topical contents. A switch variable is used to

determine the type of a word, i.e. whether it is a shell word,

a topical word or a function word.

To evaluate the usefulness of our model, we use the results

of the model for the tasks of shell phrases extraction and

document modeling. On a corpus of real discussion/debate

forum posts from five domains on CreateDebate, STM can

achieve encouraging improvement in all tasks compared with

the baselines that do not separate shell from topical contents.

The results confirm the usefulness of modeling shell inside

argumentative texts, and also demonstrate the advantages of

STM over existing topic models.

The contributions of this paper are summarized as follows:

1) We propose an unsupervised probabilistic model,

named STM, to separate shell from topical contents.

2) With a real data set, we show that our model is able to

identify both meaningful topics and shell.

II. RELATED WORK

A. Topic models

Our work is about building language models from text.

Since Blei et al. first introduced LDA [2], LDA has been

extensively adopted and extended into more complex models

for different purposes. Here we only cover some models that

are closely related to our model.

Griffiths et al. [3] proposed an HMM-LDA model, which

combines short-range syntactic dependencies along with

long-range topical dependencies among the words in each

document. In this model, it is assumed that words are

generated from a number of hidden states that are related

to each other through a first-order hidden Markov model.

These states model the syntax of the language. One of

the states is a special one that generates topic words. In

effect, the hidden states model different parts of speech such

as nouns, verbs, adjectives, adverbs and prepositions. The

special topical state turns out to be mostly nouns. Our model

bears strong resemblance to their model, but our focus is

not on modeling the syntax of language. Instead, we focus

on the task of modeling shell as well as hidden topics. In

another model that combines HMM with LDA, Gruber et al.

assumed that each sentence has only a single topic and the

topic of the next sentence is more likely to be the same as

the previous one [4]. This is a different HMM assumption

than the one in [3] and in our work.

Bigram Topic Model [5] incorporated latent variables into

bigram models based on hierarchical Dirichlet language

model.This model can separate topic words from function

words, such as “in,” and “of,” and make latent topics less

dominated by function words compared with standard LDA.

Although our model also identifies function words, we allow

both bigrams and unigrams instead of only bigrams. Wang

et al. [6] proposed a Structural Topic Model to find topical

structures through modeling topical transitions using first

order Markov chain. Du et al. [7] also captured topical

structures, but the dependency between topics are modeled

by Poisson Dirichlet Process (PDP). Wang et al. [8] proposed

topical n-grams to discover topic phrases, such as “data

mining” and “natural language processing.” This model

introduced a status variable to control whether to sample

a unigram or bigram. Our model also has such a status

variable, but we also capture function words, and the status

variable is dependent on the previous status instead of

previous word and topic.

B. Studies on online forums
There have been many studies on online discussion forum-

s. A number of studies focus on mining opinions, viewpoints

and stances from online forums [9; 10; 11]. Although some

of them also use topic models, their objectives are very

different from ours.
There have also been some work on finding phrases

on debate/discussion forums. Mukherjee and Liu modeled

agreement and disagreement indicator expressions to analyze

user interactions [12]. Mukherjee et al. modeled tolerance

in online discussions [13]. All these models use a variable

trained with a Maximum Entropy model by utilizing part-

of-speech (POS) information. In other words, their models

are semi-supervised. In contract, our model is fully unsu-

pervised. On the other hand, the phrases discovered in their

models are mostly agreement and disagreement expressions,

while our model can also find organizational phrases, such

as “after all” in the example in Section I.

C. Argumentative analysis
Another line of studies related to our work is on argu-

mentative analysis. Cabrio et al. [14] proposed a framework

to support participants of online debates by combining

textual entailment (TE) and argumentation theory. Guo et

al. [15] proposed a weakly-supervised method to analyze

argumentative structures of scientific papers. Rink et al. [16]

proposed a generative model to discover semantic relations

in electronic medical records. Xu et al. [17] proposed a

framework to identify arguments from both intra-sentence

and inter-sentence level. Feng et al. [18] defined several fea-

tures to classify arguments by using argumentation schemes.

One work in this line that shares a similar goal as ours

is [1], where Conditional Random Field (CRF) is used to

identify shell phrases based on several features. However,

as we mentioned in Section I, their model is supervised and

they focus on argumentative essays, which are more formal.

In contract, our model are unsupervised, and we find shell

on online debate forums, which likely contain more noisy

words than student essays.

D. Discourse analysis
Part of our work is related to discourse analysis in natural

language processing. Implicit discourse relation recogni-

tion [19; 20] tries to infer the implicit discourse relations
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given the raw text. For example, [20] identifies the implicit

discourse relation of argument pairs. There are also other

work that make use of discourse structures for different

tasks, such as polarity analysis [21] and article wide tem-

poral classification [22]. Another work [23] used Bayesian

models to jointly model sentiment, aspects and discourse

relations. While some shell phrases may be considered as

indicators of discourse relations, such as “after all,” our

model can also discover other phrases, such as “I believe”.

On the other hand, our model simultaneously captures topics

and transitions among status assigned to each word in a

principled framework.

III. SHELL TOPIC MODEL (STM)

A. Motivation

Assumptions about shell As mentioned in Section I, shell

often consists of longer phrases than unigram words. In

order to model shell, one possible way to do it is to view a

document as bag of n-grams, where n can be any number.

However, this greatly enlarges the vocabulary. Furthermore,

many defined n-grams are meaningless. The other way is to

label a set of training data to learn a model, such as Max-

imum Entropy (MaxEnt) model [12], to determine whether

the current word can be an element of shell. However,

training data are likely domain dependent, which makes

them hard to re-use. Here we explore another approach.

The idea is that we assume shell words are generated based

on their previous words. To capture this assumption, we let

each word have its own multinomial word distribution and

a status variable (switch variable) to determine whether the

current word is a shell word or non-shell word. So we can

always find shell as bigrams in our model. Note that, longer

shell phrases can be generated by concatenating consecutive

bigrams.

Assumptions about status variables The other assumption

we have is that shell words tend to be generated if the

previous word is also a shell word, and function words

tend to be generated after topical words. That is to say, the

status variables of different words are dependent. To capture

this assumption, we model transition probabilities between

status variables. Specifically, in our model, a status variable

is generated from a transition distribution associated with

the previous status variable.

B. Model

Our model is an extension of LDA [2] but captures topical

words, function words and shell words. To model them, we

use a modified version of the HMM-LDA model [3]. In our

model, we assume there are D documents in the corpus. For

each document d (1 ≤ d ≤ D) there are Sd sentences. For

each sentence s (1 ≤ d ≤ Sd) there are Nd,s words. Let

wd,s,n, an index between 1 and V , denote the nth word in

sentence s in document d, where V is the vocabulary size.

Each word is associated with a status variable x ∈ {0, 1, 2},

which represents shell status, topical status, and function

status, respectively. Each status generates words according

to a multinomial word distribution. Both topical status and

function status are used to generate unigram words. While

topical status is used to model words that provide semantic

content, function status is used to model words that serve

syntactic functions. In contrast, shell status is used to model

shell which consists of organizational phrases, such as “I

do believe that.” We should notice that shell status can

model bigrams and successive bigrams can form longer shell

phrases. Because those function words and shell words are

not topic specific, we model them globally. Like in standard

LDA, we assume that each topic k has a mutlinomial word

distribution φtk. In addition, we assume the function status is

associated with a global multinomial word distribution φs,
and each shell status is associated with a specific global

mutlinomial word distribution ψv for each word v. We

assume that φtk and φs are sampled from a Dirichlet prior

distribution with parameter β, and ψv are sampled from

another Dirchlet distribution with parameter γ.

We then model distributions for each status. We assume

that there are transition probabilities between statuses, and

the transition probabilities from a status to other statuses

follow a multinomial distribution. We use σx to denote

the initial and transition probabilities for status x. We also

assume that these distributions are sampled from a Dirichlet

distribution with parameter δ.

Finally, we model the generation process of a document.

Like in standard LDA, we assume a topic distribution θd for

each document d, which is also sampled from a Dirichlet

distribution with parameter α. For each word wd,s,n in

sentence s in document d, we first sample its status variable

xd,s,n from σxd,s,n−1
and its topic zd,s,n from θd. We

then sample a word according to the corresponding word

distribution.

The document generative process can be described as
follows:

• Draw φs ∼ Dir(β)
• For each topic k = 1, ..., T , draw φt

k ∼ Dir(β)
• For each status x = 0, 1, 2, draw σx ∼ Dir(δ)
• For each word w = 1, ..., V , draw ψw ∼ Dir(γ)
• For each document d = 1, ..., D

– Draw θd ∼ Dir(α)
– For each word n = 1, ..., Nd,s in each sentence s = 1, ..., Sd

� Draw xd,s,n ∼Multi(σxd,s,n−1
)

� Draw zd,s,n ∼Multi(θd)
� if (xd,s,n = 0) // shell status

- Draw wd,s,n ∼Multi(ψwd,s,n−1
)

� else if (xd,s,n = 1) // topical status
- Draw wd,s,n ∼Multi(φt

zd,s,n
)

� else // function status
- Draw wd,s,n ∼Multi(φs)

Note that at the beginning of a sentence we only allow

function status and topical status. That is to say, only

unigram is allowed at the beginning of a sentence. The

graphical presentation for our model is shown in Fig. 1.

799



� 

� 

�d 

�� −1 �� 

�� − 1 �� 

…. 

…. 

� 

	t 


 

� 

	s 
� 


 

� 

�� 

� 

…. 

…. �� + 1 

�� + � 

�� + � 

� 

� 

Figure 1. The plate notation of STM. Dashed variables will be collapsed
out in Gibbs sampling.

C. Inference

Exact inference of hierarchical Bayesian models is in-

tractable due to large number of variables and parameters.

Approximate inference methods have been developed to

solve this problem, such as Gibbs sampling [24], expectation

propagation and Gibbs-EM. In this paper we use collapsed

Gibbs sampling [24] to estimate the model parameters.

The parameters θ, φt, φs, ψ and σ can be integrated

out by using collapsed Gibbs sampling. To perform Gibbs

sampling, we need to work out the conditional probabili-

ties p(xd,s,n, zd,s,n|w, x−(d,s,n), z−(d,s,n), α, β, γ, δ), where

x−(d,s,n) represents the set of all x except xd,s,n and

z−(d,s,n) is defined similarly. In each step of Gibbs sampling,

we jointly sample status xd,s,n and topic zd,s,n based on the

current assignments of all the other hidden variables and all

the observed words. Due to space limit, we leave out the

details of the Gibbs sampling formulas.

IV. EXPERIMENT

For evaluation, we conducted both quantitative and qual-

itative experiments as we will present in this section.

A. Data Set and Experiment Settings

Data: We use a debate forum data set crawled from

CreateDebate. The data set contains threads in different

domains on different topics such as “Does God exist?”

Each thread contains many posts written by different users

expressing their opinions and commenting on each other’s

posts. We discard threads whose size is smaller than 5K,

since these threads are not very popular and thus contain

less information. We also discard those domains having less

than 40 threads. Finally, we get 775 threads from 5 domains.

We also split each thread into sentences because we model

word dependencies at the sentence level. Finally, our data set

consists of 44,667 unique words in the vocabulary, 3,389,240

words, and 201,452 sentences with an average of 16.8 words

per sentence2. Note that we treat each thread as a document.

2Code and data are available at: https://www.dropbox.com/s/
ph7666nfuykgddq/ShellMiner-data-code.zip?dl=0

Table III
PRECISION @ TOP 10, 20, 30, 40, 50 AND 60 RANK POSITIONS OF STM

AND BASELINE.

n-grams Methods p@10 p@20 p@30 p@40 p@50 p@60

4-grams
STM 1.000 0.900 0.833 0.875 0.860 0.833

Baseline 0.600 0.800 0.767 0.800 0.780 0.800

5-grams
STM 0.900 0.850 0.800 0.825 0.780 0.750

Baseline 0.700 0.600 0.600 0.625 0.640 0.667

Parameter settings: In all our experiments, we fix the

number of topics T = 50, and empirically set the Dirichlet

priors as follows: α = 50.0/T , β = 0.1, δ = 0.5, and

γ = 0.1 as suggested in [24]. We run STM with 500

iterations of Gibbs sampling.

B. Qualitative Evaluation

As mentioned in Section III, our model can identify both

topical words and shell phrases. In this section, we will show

the hidden topics and shell phrases learned by our model.

Note that although our model can only discover bigrams as

shell, we can concentrate continues bigrams to form higher

order n-grams shell.

We first show the topics discovered by our model. We

randomly choose 10 topics and observe the top 10 words

learned by our proposed STM model. The results are shown

in Table I. We can see from the table that the discovered top-

ics generally make sense. For example, from the top words

like “music,” “rap” and “songs,” it is easy to justify that

Topic 9 is about music. Top topical words like “religion,”

“islam,” “christianity” and “muslims” demonstrate Topic 5 is

about religion. We also observe a few noisy words in some

topics, such as “was” in Topic 1 and “him” in Topic 7. This

is because we do not remove stop words in our model, and

they are general words that have high frequency. However,

as topical words mentioned above, although there is a few

noisy words, we can still identify each topic.

We then show the shell phrases learned by our model. For

comparison, we also show the most frequent 4-grams and

5-grams in our data set. We denote this method as TFP (top

frequent phrases). The results are shown in Table II. We can

see that most of the top 4-grams and 5-grams discovered by

STM are indeed shell, such as “i do n’t believe,” “i ’m pretty

sure” and “i do n’t agree with.” On the other hand, those n-

grams discovered by TFP contain more noisy phrases, such

as “can yes we can,” “there is no god” and “do n’t believe

in god.”

C. Quantitative Evaluation

1) Shell Phrases Extraction: In order to quantitatively

evaluate the shell phrases we can identify using our model,

we use human annotated ground truth to measure the perfor-

mance. Using both STM and a baseline which simply ranks

4-grams and 5-grams by frequency, we first obtain two lists

of the top shell phrases by each method, respectively. Here

we choose the top 100 4-grams and 5-grams. We then take
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Table I
TOP WORDS FOR DIFFERENT TOPICS DISCOVERED BY STM.

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8 Topic 9 Topic 10

war stalin gay hitler religion israel god life music america
military russia marriage jews islam the him space rap britain
iraq during women germany christianity hamas evil earth metal liberals
was million homosexuality german muslims palestine us end like country
wars production homosexuals propaganda christians palestinians good planet dubstep conservatives
country famine men liberalism morality land all planets songs history
the success sex fascism religious jews jesus aliens song patriotism
us deaths gays communists religions palestinian love infinite rock germany
soldiers grain children crazy christian gaza christianity travel listen nation
terrorists collectivization homosexual himself beliefs state man universe band liberal

Table II
TOP 4-GRAMS AND 5-GRAMS DISCOVERED BY STM AND TFP (TOP FREQUENT PHRASES).

4-grams 5-grams

STM TFP STM TFP

i do n’t think i do n’t think i do n’t see how we can yes we can
i do n’t know i do n’t know i do n’t believe in yes we can yes we
in the first place can yes we can i do n’t think that can yes we can yes
i do n’t believe yes we can yes i do n’t agree with has nothing to do with
i do n’t see we can yes we i do n’t know why that there is no god
i ’m not sure if you do n’t there is no such thing there is no such thing
i do n’t care i do n’t believe you do n’t know what i do n’t believe in
i do n’t have there is no god i do n’t understand why i do n’t think that
you do n’t have in the first place most important entitles individual citizens you do n’t believe in
there is no evidence do n’t believe in i have no problem with i do n’t see how

the union of these two lists of phrases and present them to

two human judges. The two human judges independently

label these phrases as either shell or non-shell. The criterion

we give to the human judges is that if a phrase can be

used in an argument regardless of the debate topic, then the

phrase is considered shell. The agreement score between

the two judges using Cohen’s kappa is 0.631, indicating

substantial agreement. We then discard those phrases which

have conflicting labels. The remaining phrases are used to

compute precision @ n (p@n), a commonly used metric

for ranking problems such as document retrieval. We set

n to 10, 20, 30, 40, 50 and 60. The results are shown in

Table III. We can see that for both 4-grams and 5-grams,

STM consistently outperforms the baseline for all n.
2) Document Modeling: To measure whether STM is a

good generative model, we also compute the perplexity on

unseen test set. We compare with the perplexity values of

standard LDA.
Perplexity, a commonly used metric to asses the predictive

power of a new model, is algebraically equivalent to the
inverse of the geometric mean per-word likelihood [2].
Formally, for a test set of M documents, the perplexity is
defined as follows:

perplexity(Dtest) = exp
(
−

∑M
d=1 log p(wd)∑M

d=1Nd

)
. (1)

Here, wd represents all the words in document d, and
Nd is the number of words in document d. The definition
of perplexity implies that the lower the perplexity is, the
better the model. Because higher per-word likelihood on the
test set means that the model can predict the unseen data

better. According to Eqn 1, given the learned parameters θ̂d

(document-topic distributions) and ϕ̂k (topic-word distribu-
tions), the perplexity of LDA is calculated by:

perplexity(Dtest)

= exp
(
−

∑M
d=1

∑Nd
n=1 log(

∑T
k=1 ϕ̂k,wd,n θ̂

d
k)∑M

d=1Nd

)
(2)

Similarly, the perplexity of STM is given by:

perplexity(Dtest)

= exp
(
−

∑M
d=1

∑Sd
s=1

∑Nd,s

n=1 log p(wd,s,n)∑M
d=1Nd

)
(3)

where

p(wd,s,n|n �= 1) =

2∑
s=0

p(xd,s,n−1 = s)×

(ψ̂wd,s,n−1,wd,s,n σ̂s,0 + θ̂dkφ̂t
k,wd,s,n

σ̂s,1 + φ̂s
wd,s,n

σ̂s,2) (4)

and

p(wd,s,1) = θ̂dkφ̂t
k,wd,s,1

p̂(x = 1) + φ̂s
wd,s,1

p̂(x = 2). (5)

Here, p̂(x = s) means the estimated probability that the

status of the current word is s, and it can be estimated by

the ratio of status s appeared at the first word of all sentences

in the training set. Note that at the beginning of a sentence,

the status variable x is forced to be either 1 (topical status)

or 2 (function status).

In our experiment, we used 20% of our data set as test

set, and the rest 80% data for training the model. For LDA,

we empirically set Dirichlet parameters as β = 0.01, α =
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Figure 2. Perplexity results for STM and LDA with different number of
(a) topics and (b) iterations.

50.0/T , and train the model using the popular open source

topic modeling package JGibbLDA3.

Increasing the number of topics
First, we compare perplexity values of LDA and our STM

model across the number of topics with 500 iterations. The

results are shown in Fig. 2(a). We can see that as the number

of topics increases, the perplexity of LDA drops. However,

the perplexity of STM does not change significantly, which

means the predictive power of STM is stable when the

number of topics changes. We can also see that our STM

model achieves significantly lower perplexities with different

topics showing that STM fits the debate/discussion forum

data better.

Increasing the number of iterations
We then fix the number of topics to 50, and increase the

number of iterations. We can see from Fig. 2(b) that as the

number of iterations increases, the perplexity results of both

LDA and STM do not change much. One possible reason is

that our data set is not very large, which leads both models to

convergence with a few iterations. Also, STM outperforms

LDA under all different settings of iterations.

V. CONCLUSION

In this paper, we proposed a novel latent variable model

called Shell Topic Model (STM) to mine debate/discussion

forums data. Our model is based on the observation that

users tend to express their opinions using not only evidence

and claims (topics), but also organizational phrases (shell)

to organize them. Our model captures the observations in an

unsupervised way to jointly model shell, topics, and function

words. In particular, to capture shell which are usually long-

term phrases, we model shell as bigrams and concatenate

consecutive bigrams to form longer phrases. Experimental

results showed that our model outperformed the baseline in

the task of shell phrases extraction. Statistical experiments

of perplexity are also conducted showing that our proposed

STM model fit the data better and find both meaningful

topics and shell.

In this work, we only considered content of forum data.

As some previous work has shown, user attributes [10]

3http://jgibblda.sourceforge.net/

may improve the performance of topic models. We hope to

explore this direction in our future work. Another interesting

aspect is the interaction features, such as replying and quot-

ing, on forums. We also plan to incorporate these features

in the future work.

ACKNOWLEDGMENT

This work was done during Jianguang Du’s visit to

Singapore Management University. This work was partially

funded by the National Program on Key Basic Research

Project (973 Program, Grant No. 2013CB329605), National

Natural Science Foundation of China (NSFC, Grant Nos.

61472040 and 60873237), and Beijing Higher Education

Young Elite Teacher Project (Grant No. YETP1198).

REFERENCES

[1] N. Madnani, M. Heilman, J. Tetreault, and M. Chodorow, “Identifying high-level
organizational elements in argumentative discourse,” in NAACL-HLT, 2012, pp.
20–28.

[2] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” JMLR,
vol. 3, pp. 993–1022, 2003.

[3] T. L. Griffiths, M. Steyvers, D. M. Blei, and J. B. Tenenbaum, “Integrating
topics and syntax.” in NIPS, 2004, pp. 537–544.

[4] A. Gruber, Y. Weiss, and M. Rosen-Zvi, “Hidden topic markov models,” in
AISTATS, 2007, pp. 163–170.

[5] H. M. Wallach, “Topic modeling: beyond bag-of-words,” in ICML, 2006, pp.
977–984.

[6] H. Wang, D. Zhang, and C. Zhai, “Structural topic model for latent topical
structure analysis,” in ACL, 2011, pp. 1526–1535.

[7] L. Du, W. L. Buntine, and H. Jin, “Sequential latent dirichlet allocation: Discover
underlying topic structures within a document,” in ICDM, 2010, pp. 148–157.

[8] X. Wang, A. McCallum, and X. Wei, “Topical n-grams: Phrase and topic
discovery, with an application to information retrieval,” in ICDM, 2007, pp.
697–702.

[9] A. Abu-Jbara, M. Diab, P. Dasigi, and D. Radev, “Subgroup detection in
ideological discussions,” in ACL, 2012, pp. 399–409.

[10] M. Qiu, L. Yang, and J. Jiang, “Modeling interaction features for debate side
clustering,” in CIKM, 2013, pp. 873–878.

[11] S. Gottipati, M. Qiu, Y. Sim, J. Jiang, and N. A. Smith, “Learning topics and
positions from debatepedia,” in EMNLP, 2013.

[12] A. Mukherjee and B. Liu, “Mining contentions from discussions and debates,”
in KDD, 2012, pp. 841–849.

[13] A. Mukherjee, V. Venkataraman, B. Liu, and S. Meraz, “Public dialogue:
Analysis of tolerance in online discussions,” in ACL, 2013.

[14] E. Cabrio and S. Villata, “Combining textual entailment and argumentation
theory for supporting online debates interactions,” in ACL, 2012, pp. 208–212.

[15] Y. Guo, A. Korhonen, and T. Poibeau, “A weakly-supervised approach to
argumentative zoning of scientific documents,” in EMNLP, 2011, pp. 273–283.

[16] B. Rink and S. Harabagiu, “A generative model for unsupervised discovery of
relations and argument classes from clinical texts,” in EMNLP, 2011, pp. 519–
528.

[17] X. Fan, Z. Qiaoming, and Z. Guodong, “A unified framework for discourse
argument identification via shallow semantic parsing,” in COLING, 2012, pp.
1331–1340.

[18] V. W. Feng and G. Hirst, “Classifying arguments by scheme,” in ACL, 2011,
pp. 987–996.

[19] E. Pitler, A. Louis, and A. Nenkova, “Automatic sense prediction for implicit
discourse relations in text,” in ACL, 2009, pp. 683–691.

[20] Y. Hong, X. Zhou, T. Che, J. Yao, Q. Zhu, and G. Zhou, “Cross-argument
inference for implicit discourse relation recognition,” in CIKM, 2012, pp. 295–
304.

[21] B. Heerschop, F. Goossen, A. Hogenboom, F. Frasincar, U. Kaymak, and
F. de Jong, “Polarity analysis of texts using discourse structure,” in CIKM, 2011,
pp. 1061–1070.

[22] J.-P. Ng, M.-Y. Kan, Z. Lin, W. Feng, B. Chen, J. Su, and C.-L. Tan, “Exploiting
discourse analysis for article-wide temporal classification,” in EMNLP, 2013, pp.
12–23.

[23] A. Lazaridou, I. Titov, and C. Sporleder, “A bayesian model for joint unsu-
pervised induction of sentiment, aspect and discourse representations,” in ACL,
2013.

[24] T. L. Griffiths and M. Steyvers, “Finding scientific topics,” Proceedings of the
National academy of Sciences of the United States of America, vol. 101, no.
Suppl 1, pp. 5228–5235, 2004.

802


